yeskery

UDP 协议详解

传输层最重要的协议为TCP协议和UDP协议。这两者使用“网”的方式走了两个极端。两个协议的对比非常有趣。TCP协议复杂,但传输可靠。UDP协议简单,但传输不可靠。其他的各个传输层协议在某种程度上都是这两个协议的折中。我们先来看传输层协议中比较简单的UDP协议。

UDP 协议简介

UDP(User Datagram Protocol)传输与IP传输非常类似。你可以将UDP协议看作IP协议暴露在传输层的一个接口。UDP协议同样以数据包(datagram)的方式传输,它的传输方式也是”Best Effort”的,所以UDP协议也是不可靠的(unreliable)。那么,我们为什么不直接使用IP协议而要额外增加一个UDP协议呢? 一个重要的原因是IP协议中并没有端口(port)的概念。IP协议进行的是IP地址到IP地址的传输,这意味者两台计算机之间的对话。但每台计算机中需要有多个通信通道,并将多个通信通道分配给不同的进程使用(关于进程,可以参考Linux进程基础)。一个端口就代表了这样的一个通信通道。正如我们在邮局和邮差中提到的收信人的概念一样。UDP协议实现了端口,从而让数据包可以在送到IP地址的基础上,进一步可以送到某个端口。

尽管UDP协议非常简单,但它的产生晚于更加复杂的TCP协议。早期的网络开发者开发出IP协议和TCP协议分别位于网络层和传输层,所有的通信都要先经过TCP封装,再经过IP封装(应用层->TCP->IP)。开发者将TCP/IP视为相互合作的套装。但很快,网络开发者发现,IP协议的功能和TCP协议的功能是相互独立的。对于一些简单的通信,我们只需要“Best Effort”式的IP传输就可以了,而不需要TCP协议复杂的建立连接的方式(特别是在早期网络环境中,如果过多的建立TCP连接,会造成很大的网络负担,而UDP协议可以相对快速的处理这些简单通信)。UDP协议随之被开发出来,作为IP协议在传输层的”傀儡”。这样,网络通信可以通过应用层->UDP->IP的封装方式,绕过TCP协议。由于UDP协议本身异常简单,实际上只为IP传输起到了桥梁的作用。我们将在TCP协议的讲解中看到更多TCP协议和UDP协议的对比。

UDP协议的头部

udp1

上面的source port和destination port分别为UDP包的出发端口和目的地端口。Length为整个UDP包的长度。

checksum的算法与IP协议的header checksum算法相类似。然而,UDP的checksum所校验的序列包括了整个UDP数据包,以及封装的IP头部的一些信息(主要为出发地IP和目的地IP)。这样,checksum就可以校验IP:端口的正确性了。在IPv4中,checksum可以为0,意味着不使用checksum。IPv6要求必须进行checksum校验。

端口与 socket

端口(port)是伴随着传输层诞生的概念。它可以将网络层的IP通信分送到各个通信通道。UDP协议和TCP协议尽管在工作方式上有很大的不同,但它们都建立了从一个端口到另一个端口的通信。

udp2

随着我们进入传输层,我们也可以调用操作系统中的API,来构建socket。Socket是操作系统提供的一个编程接口,它用来代表某个网络通信。应用程序通过socket来调用系统内核中处理网络协议的模块,而这些内核模块会负责具体的网络协议的实施。这样,我们可以让内核来接收网络协议的细节,而我们只需要提供所要传输的内容就可以了,内核会帮我们控制格式,并进一步向底层封装。因此,在实际应用中,我们并不需要知道具体怎么构成一个UDP包,而只需要提供相关信息(比如IP地址,比如端口号,比如所要传输的信息),操作系统内核会在传输之前会根据我们提供的相关信息构成一个合格的UDP包(以及下层的包和帧)。

端口是传输层带来的最重要的概念。我们进一步了解了UDP协议。如果已经掌握了IP协议,那么UDP协议就没有任何困难可言,它只是IP协议暴露在传输层上的接口。

UDP套接口是无连接的、不可靠的数据报协议;既然他不可靠为什么还要用呢?其一:当应用程序使用广播或多播时只能使用UDP协议;其二:由于他是无连接的,所以速度快。因为UDP套接口是无连接的,如果一方的数据报丢失,那另一方将无限等待,解决办法是设置一个超时。

建立UDP套接口时socket函数的第二个参数应该是SOCK_DGRAM,说明是建立一个UDP套接口;由于UDP是无连接的,所以服务器端并不需要listen或accept函数。

使用UDP套接字编程可以实现基于TCP/IP协议的面向无连接的通信,它分为服务器端和客户端两部分,其主要实现过程如下图所示。

udp3

UDP 协议的特点

UDP提供不可靠服务,具有TCP所没有的优势:

  • UDP无连接,时间上不存在建立连接需要的时延。空间上,TCP需要在端系统中维护连接状态,需要一定的开销。此连接装入包括接收和发送缓存,拥塞控制参数和序号与确认号的参数。UCP不维护连接状态,也不跟踪这些参数,开销小。空间和时间上都具有优势。

举个例子:

DNS如果运行在TCP之上而不是UDP,那么DNS的速度将会慢很多。
HTTP使用TCP而不是UDP,是因为对于基于文本数据的Web网页来说,可靠性很重要。
同一种专用应用服务器在支持UDP时,一定能支持更多的活动客户机。

  • 分组首部开销小,TCP首部20字节,UDP首部8字节。

  • UDP没有拥塞控制,应用层能够更好的控制要发送的数据和发送时间,网络中的拥塞控制也不会影响主机的发送速率。某些实时应用要求以稳定的速度发送,能容忍一些数据的丢失,但是不能允许有较大的时延(比如实时视频,直播等)

  • UDP提供尽最大努力的交付,不保证可靠交付。所有维护传输可靠性的工作需要用户在应用层来完成。没有TCP的确认机制、重传机制。如果因为网络原因没有传送到对端,UDP也不会给应用层返回错误信息

  • UDP是面向报文的,对应用层交下来的报文,添加首部后直接乡下交付为IP层,既不合并,也不拆分,保留这些报文的边界。对IP层交上来UDP用户数据报,在去除首部后就原封不动地交付给上层应用进程,报文不可分割,是UDP数据报处理的最小单位。
    正是因为这样,UDP显得不够灵活,不能控制读写数据的次数和数量。比如我们要发送100个字节的报文,我们调用一次sendto函数就会发送100字节,对端也需要用recvfrom函数一次性接收100字节,不能使用循环每次获取10个字节,获取十次这样的做法。

  • UDP常用一次性传输比较少量数据的网络应用,如DNS,SNMP等,因为对于这些应用,若是采用TCP,为连接的创建,维护和拆除带来不小的开销。UDP也常用于多媒体应用(如IP电话,实时视频会议,流媒体等)数据的可靠传输对他们而言并不重要,TCP的拥塞控制会使他们有较大的延迟,也是不可容忍的。

本文内容来自:

  1. https://www.cnblogs.com/HPAHPA/p/7737531.html
  2. https://blog.csdn.net/aa1928992772/article/details/85240358

评论

发表评论 点击刷新验证码

提示

该功能暂未开放